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Abstract—Relative attribute learning aims to learn the ranking
function describing the relative strength of the attribute. Most
of current learning approaches learn linear ranking function
for each attribute by use of the hand-crafted visual features.
Different from the existing work, in this paper, we propose a
novel deep relative attributes (DRA) algorithm to learn visual
features and the effective nonlinear ranking function to describe
the relative attribute of image pairs in a unified framework.
Here, visual features and the ranking function are learned
jointly, and they can benefit each other. The proposed DRA
model is comprised of 5 convolutional neural layers, 5 fully
connected layers, and a relative loss function which contains the
contrastive constraint and the similar constraint corresponding
to the ordered image pairs and the un-ordered image pairs,
respectively. To train the DRA model effectively, we make use of
the transferred knowledge from the large scale visual recognition
on ImageNet [1] to the relative attribute learning task. We
evaluate the proposed DRA model on three widely used datasets.
Extensive experimental results demonstrate that the proposed
DRA model consistently and significantly outperforms the state-
of-the-art relative attribute learning methods. On the public OSR,
PubFig and Shoes datasets, compared with the previous relative
attribute learning results [2], the average ranking accuracies
have been significantly improved by about 8%, 9%, and 14%,
respectively.

Index Terms—Relative attributes, Deep learning.

I. INTRODUCTION

Visual attributes are intrinsic properties in images with
human-designed names (e.g., ‘natural’, ‘smiling’), and they
are valuable as higher semantic cues than low level
visual features in many interesting scenarios. For example,
researchers have shown that visual attributes are valuable
for facial verification [3], object recognition [4], [5],
[6], image retrieval/search [7], [8], [9], [10], [11], [12],
[13], [14], video retrieval and recommendation [15], [16],
generating descriptions of unfamiliar objects [17] and transfer
learning [18], [19], [20], [21]. Many attributes mining and
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learning methods have also been proposed [22], [23], [24].
In these methods, the attributes are binary, which indicates
the presence (or absence) of a certain property in an image.
Compared with the binary attributes, using relative attributes is
a much richer way for humans to describe objects semantically
with relative visual properties. The consecutive relative values
of the attributes can reflect not only whether the attribute
appears in an image, but also the strength of the attribute. As a
richer language of visual description than the commonly used
binary attributes, relative attribute learning has gained much
attention and can be used in many applications especially
social event analysis [25], [26], [27], [28], and zero-shot
learning [2], [29], [30], [31].

Most of the existing relative attribute learning algorithms are
based on the ranking SVM framework [2], [29], [30] to learn
a ranking function for each attribute. Here, the value of the
ranking score denotes the strength of the attribute in an image
with respect to other images. Despite remarkable progress
in this field, there exists significant room for improvement,
especially in the following three aspects: (1) Existing relative
attribute methods rely on traditional hand-crafted features,
such as gist descriptor [2], [31] and color histogram [2], [31],
which may not optimally capture the most appropriate visual
features to describe relative attributes. (2) Most of the relative
attribute learning methods [2], [29], [30], [31] only learn a
linear or shallow ranking function to obtain the relative score
of image pair for a specific attribute. The linear or shallow
models are simple, and may not best represent the mapping
from visual features of images pair to the relative score of
attributes. (3) Existing relative attribute learning methods [2],
[29], [30], [31] perform feature extraction and ranking function
learning separately, which cannot capture the most useful
features for describing visual attributes of images.

To deal with the above issues, we propose a novel deep
relative attributes (DRA) algorithm to learn visual features
and the more effective nonlinear ranking function to describe
the relative attribute of image pair in a unified framework.
In this paper, with the same pipeline as in [2], we learn the
ranking function for each relative attribute independently. As
shown in Figure 1, the proposed DRA model is comprised
of 5 convolutional neural layers, 5 fully connected layers,
and a relative loss function. The convolutional neural layers
are adopted to learn middle level visual features for attribute
representation, and the fully connected layers are adopted to
learn a nonlinear ranking function to map the learned visual
features by the convolutional neural layers to the relative
score of a specific attribute. The relative loss function contains
the contrastive constraint of the ordered image pairs and the
similar constraint of the un-ordered image pair. As a result,
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Fig. 1. The architecture of the proposed deep relative attributes model, which consists of 5 convolutional neural layers and 5 fully connected layers. The
one dimensional output of the last fully connected layer denotes the relative strength of images with regard to the natural attribute. The relative loss function
contains the contrastive constraint of the ordered image pair and the similar constraint of the un-ordered image pair.

the relative loss function can make the output of the last fully
connected layer reflect the relative score of the attribute. In
our DRA model, the visual features and the ranking function
are learned jointly in a unified convolutional neural network
framework, and they can benefit each other. More effective
visual features can improve the ranking accuracy of the relative
attribute, while a better ranking function can be used to
guide the more appropriate visual features learning. In the
proposed DRA model, there are million-scale parameters, such
as the convolutional kernels in the convolutional layer, and
the weights and the bias in the fully connected layer, which
require large scale labeled data for training. However, the
existing largest public dataset for relative attribute learning
only contains about 10 thousand-scale labeled images. To
overcome this issue, we make use of the transferred knowledge
from the large scale visual recognition on ImageNet [1]. Thus,
we adopt the trained image classification model [32], [33] to
initialize the low level layers of the proposed DRA model.
Then, the proposed DRA model is trained on the relative
attributes dataset with the labeled image pairs.

The contributions of the proposed DRA are four-fold:

• To the best of our knowledge, the proposed DRA model is
the first work to learn relative attributes directly using
CNNs, though there are deep CNN based methods for
binary attributes.

• Compared with conventional hand-crafted features and
linear ranking SVM based relative attribute learning,
we adopt convolutional neural networks to learn more
effective nonlinear functions and map the original images
to obtain their relative strength values of the attribute.

• In the proposed DRA model, the visual features and
effective nonlinear ranking functions are learned jointly
in a unified framework to benefit each other.

• Extensive experimental results demonstrate that the

proposed DRA model consistently and significantly
outperforms state-of-the-art relative attribute learning
methods on three challenging benchmarks. On the
public OSR, PubFig and Shoes datasets, compared with
the previous relative attribute learning methods [2],
the average ranking accuracies have been significantly
improved by about 8%, 9%, and 14%, respectively.

The rest of this paper is organized as follows. In Section II,
we summarize the related work. Our method and the
optimization are introduced in Section III. Experimental results
are reported and analyzed in Section IV. Finally, we conclude
the paper in Section V.

II. RELATED WORK

In this section, we review the related work about binary
attributes, relative attributes, and deep learning which are the
three most related topics to the proposed method.
Binary attributes: Visual attribute learning allows prediction
of color or texture types [34], and can also help obtain a
mid-level cue for object or face recognition [35], [3], [5].
Attributes can also facilitate zero-shot learning [35], [4],
[36] and part localization [17], [37], [38]. To avoid defining
attribute vocabularies manually, some methods aim to explore
attribute-related concepts on the Web [39], [40], extract them
from existing knowledge sources [4], [6] or discover them
interactively [41]. There are also some methods proposed for
attribute mining. Zhang et al. [42] propose to automatically
discover attribute from an arbitrary set of image and text
pairs. To detect generic facial attribute by leveraging visual
and contextual cues, Chen et al. propose to automatically
acquire training images from publicly available community-
contributed photos in an unsupervised manner [43]. To detect
various facial attributes such as gender, age and more which
consume more computation and storage resources, Lin et al.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, AUGUST 2016 3

propose a compression framework to find fewer significant
latent human topics to approximate more facial attributes [44].
In contrast to the relative attribute learning approaches, all such
methods restrict the attribute to be binary without considering
the relative information through attributes.
Relative attributes: Using relative attributes is a semantically
rich way to describe and compare objects in the world, and
more powerful than existing binary attributes in uniquely
identifying an image. In [2], relative attributes are first
proposed based on the learning to rank framework, whose
ranking function is learned for each attribute to denote the
relative values or ranking scores. The ranking functions of
all attributes are learned independently in [2], and ignore
the correlations among multiple attributes. To improve this
method, the multi-task learning is introduced in [31] to
learn ranking functions of multiple attributes jointly. Relative
attributes are also used for many other applications. In [30],
the active learning framework is adopted to include feedback
on not only the label but also the attributes. In [29], as human-
interpretable mid-level visual concepts, the relative attributes
are used for a supervisor to provide feedback to the classifier.
In [45], a relative attribute feedback strategy is adopted for
image search. Here, the ranking functions of attributes are
learned iteratively according to the user feedback to make the
images with top ranking scores close to the user’s preference.
These existing relative attributes methods are based on hand-
crafted features to learn linear functions to map these features
to the relative scores of the corresponding attributes. Different
from these methods, the proposed deep relative attributes can
learn image features and more effective nonlinear functions
for attributes in a unified framework.
Deep learning: In recent years, deep models including deep
belief networks (DBNs) [46], deep Boltzmann machines
(DBMs) [47], stacked auto-encoders (SAEs) [48], [49] and
convolutional neural networks (CNNs) [50], [32] have drawn
much attention due to their encouraging performances. As
effective feature learning methods, the deep models have been
widely used in many applications, such as large scale object
recognition [32], [1], [51], [52], [53], [54], human action
recognition [55], face point detection [56], and social event
analysis [57]. The most relevant methods to the proposed
model are deep metric learning for face verification [58],
[59] and deep ranking for fine-grained image similarity
learning [60]. In the deep metric learning methods [58], [59],
the trained Siamese networks aim to predict whether the
two input images are the same person or not. The input
of the networks is always an image pair. In contrast, the
top fully connected layer of the proposed DRA maps the
features of two images to two continuous strength values of
the attribute. The great value denotes the strong strength of
the attribute in the image while small value denotes weak
strength. In the deep metric learning methods, the difference
of two images is measured by Euclidean distance [58] and
absolute difference [59], respectively. In contrast, we adopt
the direct difference among two output values. Thus after
training, the different output values for two images are able
to not only represent whether two images are similar, but also
give their strength order with regard to the attribute. In the

test phase, the previous deep metric learning methods can
only predict whether two images belong to the same person
or not. Thus, the input must be an image pair. In contrast,
the learned DRA model can predict the strength value of
any individual image. The input is a single image. Moreover,
the inputs to the networks [58] are hand-crafted low-level
visual features including DSIFT, LBP and SSIFT. The deep
ranking [60] learns a ranking function by a triplet-based
network architecture, where each network is a combination
of the convolutional neural networks and two low-resolution
paths to extract low resolution visual features. Different from
this method, the proposed deep relative attributes algorithm
adopts a single CNN. In the forward propagation, different
inputs and outputs of the two images are computed by the
same parameters in each layer of the CNN. Though the
single CNN model is adopted, the two images are propagated
forward through the convolutional and fully connected layers,
separatively.

III. THE PROPOSED DEEP RELATIVE ATTRIBUTES

In this section, we firstly show the problem description of
deep relative attribute learning. Then, we introduce the deep
network structure of the proposed model and the detail of
each layer. At last, we illustrate the forward and backward
propagation schemes to optimize the proposed model.

A. Problem Description

The goal of relative attribute learning is to learn a ranking
function for each attribute with a number of human labeled
ordered or un-ordered image pairs. Given a test image, the
score of the ranking function can be used to denote the strength
of each attribute in the image [2]. In this paper, we focus
on learning the ranking functions for the relative attributes
independently. For simplicity, we adopt f (x) to denote the
ranking function corresponding to a specific attribute a. For
the attribute a, we use P to denote a set of ordered image
pairs and Q a set of un-ordered image pairs. If image pair
(xi,yi) ∈ P , it means that the image xi has a higher relative
value of attribute a than image yi. If image pair (xi,yi)∈Q , the
image xi and image yi have similar relative values of attribute
a. With these notations, the relative attribute learning for the
attribute a can be formulated as learning f (x) by satisfying
the following constraints:

∀(xi,yi) ∈ P f (xi)> f (yi) (1)
∀(xi,yi) ∈ Q f (xi) = f (yi) (2)

In the traditional attribute learning methods [2], [31], the
hand-crafted features are adopted, and the learned ranking
function f (x) is linear. Different from these methods, our
aim is to learn visual features and nonlinear ranking function
jointly in a unified framework to benefit each other under
convolutional neural networks. The details are introduced in
the next subsection.
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B. Deep Network Structure

To achieve the above goal, we propose a novel deep relative
attribute learning model as shown in Figure 1. Here, we show
the training and testing process of the DRA model with image
pairs for the attribute natural. The DRA model contains 5
convolutional layers (Conv1, Conv2, Conv3, Conv4, Conv5)
and 5 fully connected layers (FC6, FC7, FC8, FC9, FC10).
Different from the traditional CNNs [32], in the training phase,
the input to the DRA model is an image pair (x,y) with relative
attribute assignment l which denotes the label of the image
pair. The l = 1 means that image x has larger attribute value
than image y (ordered image pair) while the l = 0 means the
two images have similar attribute values (un-ordered image
pair). In the forward propagation, different inputs and outputs
of the two images are computed by the same parameters in
each layer. Though the same CNN model is adopted, the two
images are propagated forward through the convolutional and
fully connected layers, separatively. The outputs (F10 and F′10)
in the last fully connected layer denote the relative values
of the corresponding input images x and y with regard to
the attribute natural. Following the fully connected layer,
a relative loss function is adopted to constrain the relative
output values of the image pair. By the contrastive constraint
max(0,τ−(F10−F′10)) and the similar constraint 1

2 (F10−F′10)
2

for the natural attribute in the loss function, the ordered image
pair (l = 1) will be constrained to have the discrepant outputs
while the un-ordered image pair (l = 0) will be constrained
to have the same or very close outputs. In the test phase, the
single CNN with the learned parameters is used to predict
the strength value of any individual image with regard to the
natural attribute. It is worth noting that, as shown in Figure 1,
for each convolutional layer, we show the size and number of
the convolutional filters. For each fully connected layer, we
show the dimension of the output feature vector. We do not
show the pooling, normalization and dropout layers after the
convolutional layers or the fully connected layer. For all the
convolutional layers, we adopt the same manner of pooling
or normalization as AlexNet [32], [33]. The dropout is only
carried out after the F6 and F7 layers.

Convolutional Layers. For the mth convolution layer, we
denote its output as hm(x) = s(Wm ∗ hm−1(x) + bm), m ∈
{1, ...,5}. Here, ∗ denotes the convolutional operation, Wm
and bm are the convolutional kernel and bias. s(x) = max(0,x)
denotes the non-saturating nonlinearity activation function
which is also used as the rectified linear units (RELU) in [32].

Fully Connected Layers. For the mth fully connected
layer, we denote the output as hm(x) = s(Wmhm−1(x)+bm),
m ∈ {6, ...,10}. Here, Wm and bm are the weight matrix
and bias, respectively. For the activation function, the same
rectified linear units s(x) = max(0,x) as in the convolutional
layer is adopted.

Relative Loss Function. For a specific attribute a, the loss
function for training the ranking function f (x) is defined as
the sum of the contrastive constraint, the similar constraint and

the regularization item:

L =
1

2|G | ∑
(xi,yi)∈G

[
liLp(xi,yi)+(1− li)Lq(xi,yi)

]
+λ‖Θ‖2

F .

(3)

Here, the G = P ∪ Q contains all ordered and un-ordered
image pairs annotated for a specific attribute. li denotes the
label of the ith image pair. li = 1 means that image xi has larger
attribute values than image yi (ordered image pair) while li = 0
means the two images have similar attribute values (un-ordered
image pair). Lp(xi,yi) = max(0,τ − ( f (xi) − f (yi))) and
Lq(xi,yi) = ( f (xi)− f (yi))

2 denote the contrastive constraint
for the ordered image pairs and the similar constraint for the
un-ordered image pairs respectively. For the image xi and the
image yi, f (xi) and f (yi) denote the one dimensional output
attribute strength values (F10 and F ′10 in Figure 1 ) at the
top fully connected layer. Θ contains all parameters of the
proposed DRA model including the convolution kernels in the
convolutional layers, the transformation matrices in the fully
connected layers and the biases. In the training phase, the
relative loss is used to learn the parameters of the CNN model.
For the image xi and the image yi, the learned CNN model can
output values f (xi) and f (yi) which have the same ranking
order with the labeled order of the two images with regard
to the attribute. The τ controls the relative margin among
the attribute values of ordered image pair. During training,
( f (x)− f (y)) can be larger or smaller than τ but will be
constrained to be no less than τ. The λ is used to control
the regularization item.

We give more detailed explanations of the loss function in
two cases as follows. (1) If li = 0, which means image xi
has the same attribute value with image yi, the contrastive
constraint will be zero while the minimization of the similar
constraint ( f (xi)− f (yi))

2 will make f (xi) and f (yi) have
the same value. (2) If li = 1, which means image xi has
greater attribute value than image yi, the similar constraint will
be zero while the minimization of the contrastive constraint
max(0,τ− ( f (xi)− f (yi))) will make f (xi) have greater value
than f (yi). For this case, we illustrate it with two subcases. (a)
If f (xi) ≥ f (yi)+ τ, the loss will be zero which is just what
we want. Thus the minimization will do nothing and have no
any penalty. (b) If f (xi)< f (yi)+τ, the loss will be a positive
value τ− ( f (xi)− f (yi)). Thus the minimization will make it
close to zero until f (xi)> f (yi)+ τ.

C. Optimization

The optimization of the proposed DRA model is similar
to the conventional neural networks, where the stochastic
gradient descent is adopted. The kernels in the convolutional
layers and the weights in the fully connected layers are
updated through the forward and backward propagations. In
the forward propagation of the training phase, given two
input images, different outputs of the two images in each
layer are computed by the same operation. Though the same
CNN model is adopted, the two images are propagated
forward through the convolutional and fully connected layers
separatively. In the backward propagation, the gradients with
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regard to the outputs in each layer are calculated for the two
images separatively. Then, the gradients with regard to the
parameters in each layer are calculated based on the gradients
of the outputs for two images.

(1) Forward propagation. In the forward propagation, for
an image pair (xi,yi), the image xi will be propagated through
the convolutional layers and the fully connected layers: x→
C1 → C2 → C3 → C4 → C5 → F6 → F7 → F8 → F9 → F10.
Meanwhile, the image yi will also be propagated through the
same convolutional layers and the same fully connected layers:
y→ C′1 → C′2 → C′3 → C′4 → C′5 → F′6 → F′7 → F′8 → F′9 →
F′10. The outputs F10 and F′10 of the last fully connected layer
denote the relative strength values of the two images with
regard to the attribute. Then the relative loss of the networks
is computed based on the outputs of the fully connected layers
F10 and F′10.

(2) Backward propagation. In the backward propagation,
the partial gradients of the loss function in Eq. (3) are
firstly computed with regard to the outputs f (xi) = F10 and
f (yi) = F′10 of the last connected layer. Then the errors
computed in the loss function will be propagated backward
to the remaining fully connected layers and the convolutional
layers, the parameters Θ including the weights {Wm}M

m=1 and
biases {bm}M

m=1 of the fully connected layers and the kernels
in the convolutional layers will be updated. In a specific layer,
for an input image pair (xi,yi), once the gradients of the
outputs for image xi and yi are separatively computed, the
gradients of the same parameters will be computed based on
them. Then the parameters will be updated according to their
partial gradients. More details of the partial gradients in the
relative loss function and the fully connected layer are listed
as follows. The partial gradients in the convolutional layers are
computed in the similar way as the conventional convolutional
neural networks.

Partial gradients in the relative loss function. We use
f (x) to denote the output of the last fully connected layer F10
for the attribute. If we denote di = f (xi)− f (yi) and sign(.) as
a binary sign function, the partial gradients of the loss function
in Eq. (3) with regard to f (x) can be computed as:

∂L
∂ f (xi)

=

{
1
|G |di, if (xi,yi) ∈ Q
− 1

2|G | sign(τ−di), if (xi,yi) ∈ P (4)

∂L
∂ f (yi)

=

{
− 1
|G |di, if (xi,yi) ∈ Q

1
2|G | sign(τ−di), if (xi,yi) ∈ P (5)

Partial gradients in the fully connected layer. For
simplicity, we denote f (x) = hM(x) = s(WMhM−1(x) + bM)
as the output of the last fully connected layer. The partial
gradients of the loss function in Eq. (3) with regard to the
weights WM of the Mth fully connected layer (F10) can be
computed as:

∂L
∂WM

= ∑
(i, j)∈P

(
∂L(xi)

∂WM
+

∂L(yi)

∂WM

)
+ (6)

∑
(i, j)∈Q

(
∂L(xi)

∂WM
+

∂L(yi)

∂WM

)
+λWM.

The partial gradients with regard to the bias is:

∂L
∂bM

= ∑
(i, j)∈P

(
∂L(xi)

∂bM
+

∂L(yi)

∂bM

)
+

∑
(i, j)∈Q

(
∂L(xi)

∂bM
+

∂L(yi)

∂bM

)
. (7)

Here, ∂L(xi)
∂WM

denotes the contribution of image xi to the partial

gradients of the whole loss with regard to WM , and ∂L(yi)
∂WM

denotes the contribution of image yi.

∂L(xi)

∂WM
=

{
1
|G |di

∂hM(xi)
∂WM

, if (xi,yi) ∈ Q
−1

2|G | sign(τ−di)
∂hM(xi)

∂WM
, if (xi,yi) ∈ P

(8)

∂L(yi)

∂WM
=

{
− 1
|G |di

∂hM(yi)
∂WM

, if (xi,yi) ∈ Q
1

2|G | sign(τ−di)
∂hM(yi)

∂WM
, if (xi,yi) ∈ P

(9)

Here, the partial gradients of hM(x) are computed as

∂hM(x)
∂WM

= s′
(
WMhM−1(x)+bM

)(
hM−1(x)

)>
. (10)

Similarly, the contributions to the gradients with regard to
bM of images xi and yi can be computed as follows:

∂L(xi)

∂bM
=

{
1
|G |di

∂hM(xi)
∂bM

, if (xi,yi) ∈ Q
−1

2|G | sign(τ−di)
∂hM(xi)

∂bM
, if (xi,yi) ∈ P

(11)

∂L(yi)

∂bM
=

{
− 1
|G |di

∂hM(yi)
∂bM

, if (xi,yi) ∈ Q
1

2|G | sign(τ−di)
∂hM(yi)

∂bM
, if (xi,yi) ∈ P

(12)

Here, the partial gradients of hM(x) are computed as

∂hM(x)
∂bM

= s′
(
WMhM−1(x)+bM

)
. (13)

IV. EXPERIMENTS

In this section, we present experimental results on evaluation
of the proposed algorithm against several state-of-the-art
methods for relative attribute learning on three benchmark
datasets.

A. Datasets

We evaluate the proposed algorithm on three popularly used
relative attribute learning datasets:
(1) Outdoor Scene Recognition (OSR) [2]. This dataset
contains 2688 images from 8 categories including tall-
building, inside-city, street, highway, coast, open-country,
mountain, forest. All these 8 categories are assigned with
relative values of 6 attributes: natural, open, perspective, size-
large, diagonal-plane, depth-close. The strength values of the
6 relative attributes on 8 classes are shown in Table I.
(2) Public Figure Face (PubFig) [2]. This dataset contains
800 images from 8 random identities including Alex-
Rodriguez, Clive-Owen, Hugh-Laurie, Jared-Leto, Miley-
Cyrus, Scarlett-Johansson, Viggo-Mortensen, Zac-Efron. All
these 8 identities are assigned with relative values of 11
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Classes T I S H C O M F
Natural 1 2 2 3 4 4 4 4
Open 1 2 2 4 4 4 3 1
Perspective 7 5 6 4 2 1 3 3
Size-large 5 3 3 4 4 2 2 1
Diagonal-plane 6 4 4 5 3 2 2 1
Depth-close 4 4 4 4 1 3 2 4

TABLE I
RELATIVE ORDERING OF ATTRIBUTES ON OSR DATASET. T(TALL

BUILDING), I(INSIDE CITY), S(STREET), H(HIGHWAY), C(COAST),
O(OPEN COUNTRY), M(MOUNTAIN), F(FOREST)

Classes A C H J M S V Z
Male 6 8 7 5 2 1 4 3
White 1 2 3 5 7 6 8 4
Young 5 3 2 4 8 6 1 7
Smiling 4 4 3 1 6 5 2 5
Chubby 8 4 3 2 6 7 1 5
Visible-forehead 5 5 5 1 3 4 5 2
Bushy-eyebrows 6 7 5 8 1 2 4 3
Narrow-eyes 4 6 5 2 1 3 7 8
Pointy-nose 1 2 8 3 3 4 3 7
Big-lips 7 5 1 2 6 8 3 4
Round-face 6 4 1 3 8 7 2 5

TABLE II
RELATIVE ORDERING OF ATTRIBUTES ON PUBFIG DATASET. A(ALEX
RODRIGUEZ), C(CLIVE OWEN), H(HUGH LAURIE), J(JARED LETO),

M(MILEY CYRUS), S(SCARLETT JOHANSSON), V(VIGGO MORTENSEN),
Z(ZACEFRON)

Classes A B C F H P R SN ST W
Pointy-at-the-front 2 6 3 5 10 9 4 1 8 7
Open 3 2 8 5 7 6 1 4 9 10
Bright-in-color 6 1 2 8 4 3 10 7 9 5
Covered-with-ornaments 4 9 6 5 8 7 1 3 10 2
Shiny 2 9 4 3 6 5 8 1 10 7
High-at-the-heel 4 6 5 1 9 8 3 2 10 7
Long-on-the-leg 7 9 2 3 6 5 10 8 4 1
Formal 3 6 4 7 9 8 1 2 5 10
Sporty 10 5 6 7 4 3 8 9 1 2
Feminine 1 6 4 5 10 9 3 2 8 7

TABLE III
RELATIVE ORDERING OF ATTRIBUTES ON SHOES DATASET. A(ATHLETIC

SHOES), B(BOOTS), C(CLOGS), F(FLATS), H(HIGH HEELS), P(PUMPS),
R(RAIN BOOTS), SN(SNEAKERS), ST(STILETTO), W(WEDDING SHOES)

attributes including Male, White, Young, Smiling, Chub-
by, Visible-Forehead, Bushy-Eyebrows, Narrow-Eyes, Pointy-
Nose, Big-Lips, Round-Face. The strength values of the 11
relative attributes on 8 classes are shown in Table II.
(3) Shoes Dataset [2], [45]. This dataset includes 14658
images with 10 categories of shoes collected from like.com,
athletic-shoes, boots, clogs, flats, high-heels, pumps, rain-
boots, sneakers, stiletto, wedding-shoes. All these categories
are assigned with relative values of 10 attributes includ-
ing pointy-at-the-front, open, bright-in-color, covered-with-
ornaments, shiny, high-at-the-heel, long-on-the-leg, formal,
sporty, feminine. The strength values of the 10 relative
attributes on 10 classes are shown in Table III.

TABLE IV
RANKING ACCURACIES OF THE 4 COMPARED RELATIVE ATTRIBUTE

LEARNING METHODS FOR ALL 6 ATTRIBUTES ON THE OSR DATASET.

Method RA [2] MTL [31] RAD DRA
Natural 94.82 96.47 98.20 99.47
Open 91.01 92.88 94.79 97.81
Perspective 86.56 88.39 93.66 97.19
Size-large 86.37 88.50 93.84 96.88
Diagonal-plane 88.00 90.87 94.88 98.46
Depth-close 88.35 89.05 95.18 97.24
Avg 89.19 91.03 95.09 97.84

B. Evaluated Algorithms

To evaluate the effectiveness of the proposed deep
relative attributes algorithm, we compare the following
attributes learning methods: (1) Relative Attributes (RA) [2]
algorithm learns a linear ranking function for each attribute
independently with a learning to rank formulation. (2) Multi-
Task Learning (MTL) [31] method learns the linear ranking
functions for all attributes simultaneously in a multi-task
learning framework. (3) Relative Attributes with Deep
features (RAD) adopts the relative attribute learning method
[2] with deep learning features extracted from the seventh fully
connected layer (F7) of the AlexNet [32], [33] which is pre-
trained on ImageNet images for the LSVRC2012 [1]. (4) The
proposed Deep Relative Attributes (DRA) model learns deep
visual feature and nonlinear ranking function jointly.

C. Implementation Details

We implement the proposed DRA model based on the public
deep learning library Caffe [33], and train a convolutional
neural network model for each attribute. The parameter τ in
the relative loss function is set to 1.0. λ is set to 5e-5. More
details are illustrated as follows.

Layer Structure: In the first convolutional layer Conv1,
the input images are resized to 227×227 uniformly without
cropping in our experiment. To facilitate the weight transfer
from the pre-trained model, the number of maps and the output
dimensions of the first 5 convolutional layers (C1, C2, C3, C4
and C5), and the first two fully connected layers (F6 and F7)
are set according to the AlexNet provided in Caffe [33]. The
remaining layers are newly created. The dimensions of the
outputs in the F8 layer, the F9 layer, and the F10 layer are set
to 1000, 500 and 1, respectively. The outputs in the last fully
connected layer F10 denote the relative values of the images
with regard to the attribute.

Weights Initialization: The weights in the first 5
convolutional layers and the first 2 fully connected layers
are initialized according to the BVLC AlexNet model [33]
which wins the large scale visual recognition challenge
(LSVRC2012) [32]. The reference model is pre-trained on
about 1 million images with 1000 categories on ImageNet.
The remaining 3 fully connected layers F8, F9, and F10 are
initialized with Gaussian filter with standard deviation 0.005
and constant bias 0.
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TABLE V
RANKING ACCURACIES OF THE 4 COMPARED RELATIVE ATTRIBUTE

LEARNING METHODS FOR ALL 11 ATTRIBUTES ON THE PUBFIG DATASET.

Method RA [2] MTL [31] RAD DRA
Male 82.57 84.52 84.08 90.82
White 79.14 80.11 76.29 87.12
Young 82.52 83.91 84.62 91.49
Smiling 81.37 82.19 82.82 92.68
Chubby 77.80 79.16 80.91 89.30
Visible-forehead 88.75 89.86 87.46 94.39
Bushy-eyebrows 80.63 82.06 81.61 90.19
Narrow-eyes 81.68 81.48 81.87 90.60
Pointy-nose 79.01 79.86 79.66 91.03
Big-lips 80.38 81.20 83.91 90.35
Round-face 82.37 83.43 85.46 91.99
Avg 81.47 82.52 82.61 90.91

Learning Rate: Since there are only thousand-scale training
images available for each attribute, we fix the learning rates
in the first 4 convolutional layers (C1, C2, C3, C4) as zeros to
avoid overfitting. The learning rates for the layers C5, F6 and
F7 are all set to 0.001, while the learning rates for the layers
F8, F9 and F10 are all set to 0.01. The scheme for the learning
rate setting is also consistent with the hierarchical nature of
the features of different layers in the networks. As illustrated
in [51], the output features of the bottom convolutional
layers respond to corners and other edge/color conjunctions.
The middle layers have more complex invariances, capturing
similar textures (e.g. mesh patterns) while the top layers
are more class-specific. Since the proposed convolutional
networks for relative attribute learning are initialized with the
weights of the model trained for the 1000-class classification
task. The top layers need to be trained carefully due to the
task difference. However, the bottom layers are more likely to
share common features since they are the low level features,
such as corners and other edge/color conjunctions. Thus, the
learning rates of the bottom layers of the proposed DRA model
can be assigned with small values or even fixed.

D. Learned Ranking Results

We train all the relative attribute learning methods, including
RA [2], MTL [31], RAD, and the proposed DRA, using image
pairs comprised of all the annotated training images in the
dataset. On the OSR dataset, there are 240 training images
which can generate about 10k image pairs for each attribute.
On the PubFig dataset, it includes 241 training images, and
can generate about 7k image pairs for each attribute. On
the Shoes dataset, there are 240 training images which can
generate about 6k image pairs for each attribute. We adopt
the same evaluation scheme illustrated in [2]. Given a specific
attribute, we predict the order of an image pair (i, j) in the
test set by their relative values which are generated by the
learnt relative attribute model for this attribute. The predictions
are then compared to the ground-truth relative ordering. For
all the evaluated algorithms, the ranking results on the OSR
dataset, the PubFig dataset, and the Shoes dataset are shown

TABLE VI
RANKING ACCURACIES OF THE 4 COMPARED RELATIVE ATTRIBUTE

LEARNING METHODS FOR ALL 10 ATTRIBUTES ON THE SHOES DATASET.

Method RA [2] MTL [31] RAD DRA
Pointy-at-the-front 79.32 84.66 84.06 88.34
Open 76.41 77.37 80.04 87.02
Bright-in-color 53.09 64.06 66.36 74.97
Covered-with-ornaments 57.96 71.20 71.44 79.86
Shiny 66.61 80.53 80.66 86.92
High-at-the-heel 78.38 80.92 81.58 87.50
Long-on-the-leg 68.35 73.61 76.53 84.30
Formal 73.93 74.16 76.35 81.76
Sporty 69.84 80.46 81.74 87.72
Feminine 77.84 84.06 83.46 87.98
Avg 70.17 77.10 78.22 84.64

in Table IV, Table V, and Table VI respectively. Note that, for
the MTL [31] method, we use the public code provided by the
authors. The time and memory costs are extremely large for the
joint ranking learning. Therefore, we use about 3k image pairs
for training due to the limitation of our computer hardware.
But absolutely fair comparisons between the MTL model and
the proposed DRA model can be found in Figure 2.

Based on the results in Tables IV, V, VI, it is clear
that the proposed DRA model consistently and significantly
outperforms the state-of-the-art methods on all datasets.
Compared with the relative attribute learning (RA) method [2],
which is based on linear ranking SVM, the average accuracy
of our DRA approach is increased about 8% on the OSR
dataset, 9% on the PubFig dataset, and 14% on the Shoes
dataset. The RAD method is based on the deep features
extracted by the reference model trained for the large scale
image classification task, and obtains better performance than
the RA [2], which demonstrates the effectiveness of the
deep visual features. However, the RAD method still cannot
outperform the proposed DRA method. This is due to that,
compared with the RAD method, 2 extra fully connected layers
are added and trained in the proposed DRA for the relative
attribute learning task. All these experimental results show
that the proposed DRA method can learn not only much more
effective task-specific visual features for image representation,
but also much more effective nonlinear ranking functions to
describe the relative scores of the attributes.

To show the effect of the number of training image pairs,
we give the average accuracies of all attributes with different
numbers of image pairs as shown in Figure 2. We can see
that with a few number of image pairs, the proposed DRA
model cannot show significantly better performances than
other methods. This is because the proposed DRA algorithm
needs more image pairs to learn the large number of model
parameters. With more training image pairs, the gap between
the proposed DRA model and other baseline methods is
enlarged. It is worth noting that the proposed DRA can
perform well with hundreds of training image pairs.
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(a) OSR (b) PubFig (c) Shoes

Fig. 2. Average ranking accuracies of the compared 4 relative attribute learning methods (RA, MTL, RAD, and DRA) on the three datasets (OSR, PubFig,
and Shoes) with different number of image pairs used for training.

(a) OSR (b) PubFig (c) Shoes

Fig. 3. Average classification accuracies of the zero shot learning on the three datasets (OSR, PubFig, and Shoes) with image pairs from different number
of seen categories used for training the relative attribute models.

E. Zero-Shot Learning Results

The zero-shot learning is an application of relative attribute
learning, and aims to classify N image categories where only
S of them are provided with training images and no training
images are provided for the other U categories [2]. Here, N =
S+U and the S categories are called “seen” categories while
the U categories are called “unseen” during training.

With the same experimental setup as in [2], we adopt
Gaussian distribution as the generative model and estimate
the means {µi}N

i=1 and the covariance matrices {Σi}N
i=1 for

all the N categories. (1) For the S seen categories {cs
i}S

i=1,
we learn K predicting models {fk(x)}K

k=1 using the proposed
DRA method for all K relative attributes based on the category
relationships with regard to each attribute. Then these K
relative attributes models are used to predict the relative values
of all K attributes for a given image. Thus each image x from
the S seen categories can be represented as a K dimensional
vector x̃∈RK indicating the relative values of all K attributes.
The means {µi}S

i=1 and the covariance matrices {Σi}S
i=1 of

the S seen categories are estimated according to the relative
values (or ranking-scores) of the training images. (2) For the U
unseen categories {cu

i }Ui=1, since there are no training images
provided, the means {µi}Ui=1 and the covariance matrices

{Σi}Ui=1 of the generative Gaussian models are set based on the
parameters of the seen categories and guided by the relative
orders of the seen categories and the unseen categories with
regard to all the K attributes. For example, for the kth attribute
ak, if the unseen category cu

r is described as cs
p � cu

r � cs
q, then

the kth component of the mean µu
r is set to (µs

pk+µs
qk)/2. Here,

cs
p and cs

q are the seen categories, µs
p and µs

q are their means
of the Gaussian distributions. More details for generating the
means {µi}Ui=1 and the covariance matrices {Σi}Ui=1 for unseen
categories could be found in [2].

During the testing, a new image x is assigned with a K
dimensional vector x̃ by the K relative attributes predicting
models {fk(x)}K

k=1. It is then assigned with a seen or unseen
category based on the learned generative Gaussian models of
the seen and unseen categories:

c∗ = arg max
i∈1,...,N

P(x̃|µi,Σi) (14)

The experimental results of the zero shot learning on the
OSR, PubFig and Shoes datasets are shown in Figure 3. It is
clear that, for the RA [2], MTL [31], RAD, and the proposed
DRA methods, the zero shot image classification performances
are improved significantly with the increase of the number
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of the seen categories. On all the three datasets, the MTL
method consistently performs much better than the RA method
due to the joint learning scheme. On the OSR datast, the
proposed DRA model performs the best when the number of
the seen categories is greater than 4. The RAD method shows
better result than the proposed DRA when there are 3 seen
categories. On the PubFig dataset, the DRA method performs
better than all baselines especially when the seen categories is
larger than 6. On the Shoes dataset, the MTL method performs
the best when the number of seen categories is smaller than
6. However, the proposed DRA outperforms the MTL method
when the number of seen categories is greater than 6.

F. Discussions

Convergence Analysis: To explore the convergence of the
proposed relative convolutional neural networks, in Figure 4,
we show the training losses of the DRA model trained with
different numbers of iterations. Here, we show the convergency
curves in the first 100 iterations of all the 6 attributes on
the OSR dataset. For each attribute, 500 image pairs are
used for training. We can see that the relative convolutional
neural networks can converge quickly especially in the first
60 iterations. In Figure 5, we show the ranking accuracies
of the proposed DRA model trained with different numbers of
iterations. Here, we only show the accuracies of the 6 attributes
in the first 100 iterations, which makes the same conclusion
that the DRA can converge extremely fast at the beginning.
As illustrated in Section IV-D, the Shoes dataset is the largest
labeled image dataset for relative attribute learning, and only
contains 240 training images which can generate about 6k
image pairs for each attribute. With the scarce training data, it
is important for the proposed DRA to have a fast convergence
to obtain the prospective performance.

Layer Analysis: To show the effect of the layer structure
in the proposed DRA, in Figure 6, we give the ranking
accuracies on the OSR dataset with different layer settings.
Here, the DRA is the proposed model, and the DRA1
model has the DRA structure without the F8 layer. Compared
with the DRA1 model, the proposed DRA has about 1%
accuracy improvements for all 6 attributes, which demonstrates
the effectiveness of the fully connected layer. The DRA2
denotes the DRA1 structure without dropout after the F7 layer.
Compared with the DRA1, the performance degradation of
the DRA2 shows that the dropout layer is indispensable for
training deep neural networks. The DRA3 denotes the DRA
structure without the F8 and F9 layers. The large margin of
the performance degradation shows that the F8 and F9 layers
play an important role in improving the performance of the
DRA for relative attribute learning.

Effect of τ: In the relative loss function 3, the τ controls the
relative margin among the attribute values of the ordered image
pair. Theoretically, the larger τ results in more distinguishable
attribute values, thus obtains better ranking performance.
However, the too large τ may increase the difficulty for the
DRA model training. To support this point, we show the effect
of τ on the OSR dataset in Figure 7. We can see that the
performances are consistent while the τ is set between 0 and

Fig. 4. Training losses with different iterations for all the 6 relative attributes
on the OSR dataset.

Fig. 5. Ranking accuracies with different iterations for all the 6 relative
attributes on the OSR dataset.

2, and too large τ results in unstable ranking accuracies for
all the 6 relative attributes.

V. CONCLUSIONS

In this paper, we proposed a novel deep relative attributes
algorithm for relative attribute learning. The proposed DRA
model adopts five convolutional layers and five fully connected
layers to satisfy the two constraints of ordered image pairs
and un-ordered image pairs for relative attribute learning. As
a result, the proposed DRA can transform an image with raw
pixels into the relative strength of the attribute. To facilitate the
training of the DRA model, the weights in the low level layers
are initialized with the corresponding weights of the large
scale image classification model. We evaluate the proposed
DRA on 3 popularly used datasets with state-of-the-art
attribute learning methods, and the significant improvements
demonstrate its effectiveness. In the future work, we will train
the ranking functions for all relative attributes simultaneously
by introducing the multi-task learning.
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Fig. 6. Performance on the OSR dataset with different settings. DRA denotes
the proposed deep relative attribute learning method. DRA1 model has the
DRA structure without the F8 layer. DRA2 denotes the DRA1 structure
without dropout after the F7 layer. DRA3 denotes the DRA structure without
the F8 and F9 layers.

Fig. 7. Ranking accuracies with different τ for all the 6 relative attributes
on the OSR dataset.
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